

Mo'PaQ 2000

The official client of Andrey Lelikov’s MPQ API Library DLL

User's Manual	Last Modified: � SAVEDATE \@ "M/d/yyyy" * MERGEFORMAT �1/6/2000�

Table of Contents

Version History

Introduction

What’s an MPQ?

What’s ‘Storm’?

What’s the MPQ API Library DLL?

What’s Mo’PaQ 2000?

Using Mo’PaQ 2000

For the impatient

Overview of functionality

Setting up Mo’PaQ 2000

The command-line interface

Adding files – the a and A commands

Extracting files – the e and x commands

Deleting files – the d command

Listing the files in an archive – the l command

Running scripts – the s command

Writing Scripts

Overview of scripts

Differences between the command line and scripts

Opening archives – the O and o commands

Closing archives – the C and c commands

Pausing scripts – the p command

Technical Support

Is it a bug?

Tech. support checklist

Getting the latest version of Mo’PaQ 2000

Getting the MPQ API Library DLL

Credits

Coming Next Version

Closing Words

Legal Stuff

Version History

Version 1.10

Added the d command (delete file)

Added the p command (pause)

Added the ability to use wildcards for extracting files

Version 1.02

Fixed a mistake of mine that switched the x and e commands in scripts.

Fixed several small potential bugs (and probably added a lot more).

Wrote a more powerful and flexible implementation for the ‘List Files’ command.

Added more robust error handling.

Introduction

What’s an MPQ?

A MoPaQ (that’s its official name), or .MPQ file, is an archive (a file that contains multiple files) type developed by Mike O’Brien for Blizzard Entertainment. It means ‘More PaCK’, referencing compression. Blizzard uses this archive for storing application data for Diablo, Diablo 2 (I’m assuming), Starcraft and Brood War, and Warcraft 2: Battle.Net Edition. MoPaQ is a robust and halfway secure format. It features compression for reducing the size of large files as well as encryption for deterring hackers. Another method MoPaQ uses for confounding hackers is that, unlike commercial archives, MoPaQ does not store the names of the files it contains, but rather hashes (numbers that represent words). This means that it is impossible to list all of the files in an archive, making it necessary for MoPaQ viewers to use listfiles (files with a list of filenames). However, this eventually annoyed Blizzard (as well as all of us), so the newer MoPaQ format provides a way to view all the files in an archive. New MoPaQs contain a file named ‘(listfile)’ that lists all the files in that archive.

What’s ‘Storm’?

Storm.dll (or Storm for short) is a library of programming functions that Blizzard uses to read from MoPaQs. These functions are public, so anyone can use them. In fact, that is exactly what programs like MPQ View have been doing for quite some time now.

What’s the MPQ API Library DLL?

Although Storm provides public functions for reading MoPaQs, for security reasons it does not contain any functions to edit MoPaQs. However, StarEdit does, since SCMs/SCXs are really MoPaQs. Unfortunately, these functions are under tight lock and key, so all but the most knowledgeable (and persistent) hackers will be unable to use them. Unfortunately for Blizzard, there does exist one such hacker named Andrey Lelikov. He has been successful at cracking open StarEdit to reveal these functions, and his LMPQAPI.DLL (MPQ API Library DLL) does just that. It allows any programmer to have access to these functions.

What’s Mo’PaQ 2000?

I’ve been with Lelikov for a while now; since before he made his LMPQAPI.DLL. Back then, he had made a program called MPQ Archiver, the ancestor of Mo’PaQ 2000. The source of this program was not public, but by some strange twist of fate, Lelikov sent me the source in response to an e-mail I sent him (the e-mail didn’t ask for the source). The code fascinated me. He had done things I didn’t even know you could do. I sat at my computer for 2 days straight, trying to figure out what his amazing code was doing (and yes, I made ample use of my Win32 API help files). Eventually, I figured it all out. That’s when the real fun began. I asked Lelikov for permission, and, after getting it, went about redoing most of MPQ. You see, even though Lelikov is a genius in the way he did the kernel, his user interface left much to be desired. So, that was the part I worked on. I added many new features, ease of use, and a LOT of speed; and Mo’PaQ 2000 is the result.

Using Mo’PaQ 2000

For the impatient

Those who do not want to read this rather large section may simply type

MPQ2K

at the command-line to get a brief summary of MPQ2K’s functionality.

Overview of functionality

Mo’PaQ 2000 (let’s call it MPQ2K for short, since I don’t want to type that over and over) is a full featured, easy to use MoPaQ editor. It allows you to add new files, overwrite existing ones, extract files, and list the files in an archive. The one thing it does not do is allow you to delete files (coming next version).

Setting up Mo’PaQ 2000

Like its predecessor, MPQ2K is very easy to set up. It must be placed in a directory that contains the files Storm.dll and StarEdit.exe. Any version of Storm.dll will work, since they’re all basically the same. However, StarEdit.exe must be a version supported by MPQ2K. To determine whether this is so, simply run MPQ2K while in the same directory as the StarEdit.exe file. If it is an unsupported version, you will be notified immediately. In this case, you should revert to the Starcraft 1.00 version of StarEdit. This can be done in the following way:

Uninstall Starcraft (don’t delete your characters and saved games if you still want them)

Reinstall Starcraft (but not Brood War or any of the patches)

Copy the StarEdit.exe to a new folder with MPQ2K.EXE

Reinstall Brood War and any patches you had installed

The command-line interface

MPQ2K is a command line utility. It must be run from the dos prompt. The general format for running MPQ2K is something like this:

MPQ2K <Command> <MPQFile> [SourceFile] [DestinationFile]

Parameters in <> are required, ones in [] are optional for some commands. For the exact syntax and use of individual commands, see sections 2.6-2.9. But first, some preliminary information.

It is VERY important that any time you refer to a file, either on the command-line or in scripts, if the filename contains any spaces or other strange characters, you MUST enclose the entire filename in quotes (either ‘ ’ or “ ”). However, the quotes must be paired. For illustration, the following examples will work:

“this file.txt”

‘this file.txt’

“this.file-that.file.txt”

The following examples will NOT work:

bad file.txt

not.this-file.txt

“dont try this’

‘vice versa”

“or this for that matter

Another important part of command line syntax is the wildcard. Wildcard characters (*/?) are used by many command-line programs to represent multiple files. Wildcards represent one or more unknown characters. The ? wildcard stands for a single unknown character, while * wildcards stand for any number of characters. The following example would include the files ‘flub.txt’, ‘shootme.txt’, ‘deadcat.txt’, given, of course, that those files were present:

*.txt

Or, the following example would include the files ‘flub.txt’, ‘blub.txt’, ‘dub.txt’, and ‘nub.tnt’:

*ub.t?t

But the following example would only include ‘flub.txt’ and ‘blub.txt’

??ub.t?t

Adding files – the a and A commands

Probably the most useful of all the commands of MPQ2K is the ‘add files’ command. Now, I said earlier that MoPaQs can contain either compressed or uncompressed, encrypted or unencrypted files on a per-file basis. Some files in an archive can be compressed, some not. However, there are some file types that MUST NOT be compressed in a MoPaQ. So far, the only one I know of is Smacker animations (.SMK). If these are compressed in a MoPaQ, Starcraft will crash when it tries to read from it. For this reason, there are two ‘add file’ commands for MPQ2K. The a command (lowercase) stores the files to add as compressed and encrypted. The A command (uppercase), however, stores the files to add as neither compressed nor encrypted. Other than this, the two commands are identical. The syntax for adding files is:

MPQ2K (a | A) <MPQFile> <SourceFile> [DestinationFile]

Parameters in <> are required, ones in [] are optional, | means only one of two options is allowed. Here, MPQFile is the MoPaQ to add the file to. If the MoPaQ does not exist, it will be created. SourceFile is the file to add to the MoPaQ, and DestinationFile is the name that the file will be stored as in the MoPaQ. If no DestinationFile is given, the file will be added with the same name as SourceFile. For example, the following would add the file ‘blah.txt’ to the MoPaQ ‘whocares.mpq’ as ‘dumbfile.txt’:

MPQ2K (a | A) whocares.mpq blah.txt dumbfile.txt

You could also do this to add the file ‘blah.txt’ as just plain ‘blah.txt’:

MPQ2K (a | A) whocares.mpq blah.txt

Wildcards may be used for adding files, but as of yet not for extracting files. When you add files with wildcards, the [DestinationFile] parameter becomes [DestinationDirectory]. Thus, the following example would add the file ‘flub.txt’ as ‘temp*.txt\flub.txt’:

MPQ2K (a | A) *.txt temp*.txt

Don’t do this. Do it this way:

MPQ2K (a | A) *.txt temp

Extracting files – the e and x commands

As well as the ability to put files into MoPaQs, MPQ2K also has the ability to get them out. That is where the extract commands come in. The general syntax for the extract commands is:

MPQ2K (e | x) <MPQFile> <SourceFile> [DestinationDirectory]

The parameters in <> are required, ones in [] are optional | means only one of two options is allowed. SourceFile is the FULL name of the file in the MoPaQ, and DestinationDirectory is the directory in which to put the extracted file. If DestinationDirectory is absent, the file will be placed in the current directory.

The difference between the e and x commands is that the x command extracts the file with the full path, while e doesn’t. Consider these two lines:

MPQ2K e this.mpq flub\temp.txt

and

MPQ2K x this.mpq flub\temp.txt

The first would extract the file ‘flub\temp.txt’ as ‘temp.txt’ in the current directory. The second would extract the file as ‘temp.txt’ in the ‘flub’ directory. Big difference.

NOTE: Wildcards may be used for extracting files.

Deleting files – the d command

Probably the least useful command in MPQ2K’s arsenal is the delete file command. The general syntax for which is:

MPQ2K d <MPQFile> <FileToDelete>

The parameters in <> are required. FileToDelete is just that, the file to delete.

The reason is command is mostly useless is because of the way it works. All the delete file command does is remove the file’s entry from the listfile, and set the file length flag to 0. Thus, the file still exists in the archive, it is just inaccessible. This is due to a flaw with StarEdit, and cannot be fixed.

NOTE: Wildcards may not be used for extracting files.

Listing the files in an archive – the l command

Often, it is necessary to view all the files in a MoPaQ. To do this, you must use the list files command, as shown here:

MPQ2K l <MPQFile> [ListFile]

The parameters in <> are required, ones in [] are optional. This will list all the files in the MoPaQ to the screen. However, as stated earlier, most, but not all, MoPaQs contain listfiles. This means that it is impossible to find all of the files in some archives. Fortunately, there aren’t many of this kind. That said, it is only necessary to use the ListFile parameter when there is no listfile in the MoPaQ. When the l command succeeds, you will get something like the following:

Creating list... Done

Filename Size

-- ------------

 (listfile) 254

 ffg.bat 352

 ffh.bat 352

 flub dub\bomber.grp 33880

 flub dub\bomblew.grp 33880

 flub\ffg.bat 352

 flub\ffh.bat 352

 flub\LotC2.txt 732

 flub\test.txt 52

 flub\Testscr.txt 872

 flub\Testscr2.txt 133

 LotC2.txt 732

 test.txt 52

 Testscr.txt 872

 Testscr2.txt 133

 unit\terran\bomber.grp 33880

 unit\terran\bomblew.grp 33880

-- ------------

 17 recognized files 140760

Yes, this is a very strange MoPaQ I have here. But back to the point. If the MoPaQ has no listfile, you will see something like this:

Filename Size

-- ------------

-- ------------

 0 recognized files 0

If this happens, try specifying an external listfile on the command-line.

NOTES: Wildcards may not be used to specify multiple listfiles (maybe coming next version).

Running scripts – the s command

Perhaps the biggest reason that MPQ2K is superior to its predecessors is in its scripting ability. MPQ2K allows you to run many command lines much quicker, and all at once, through scripts. Scripts will be discussed in detail in section three. But here is how you run a script once it is written:

MPQ2K s <ScriptFile>

NOTE: You may not run multiple scripts using wildcards.

Writing Scripts

Overview of scripts

A script is basically a file that contains a lot of command lines for MPQ2K to process. This allows you to compile one or more entire MoPaQs in a single execution of MPQ2K. This allows for much faster execution, as well as avoiding some of the quirks that occur when a MoPaQ is changed after it is created.

Differences between the command line and scripts

For simplicity’s sake, the command-line and script-line syntax are almost identical. There are a few major points of difference, though.

MoPaQs must be explicitly opened and closed in scripts. See section 3.3-3.6 for info on this.

Because of no. 1, You need not specify which MoPaQ you are working with on every single line, as you did on the command-line. For example, the following line is perfectly correct. It would add ‘this.txt’ to the current archive as ‘that.txt’. The ‘current archive’ is the one you have already opened.

A this.txt that.txt

Opening archives – the O and o commands

The first thing you must do before all others in scripts is to open the MoPaQ you want to work with. There are two separate commands to open MoPaQs; the O and o commands. The O command (uppercase) is used for opening a MoPaQ for output; this is used for the a and A commands. The o command (lowercase) opens a MoPaQ for input; it is needed for the e, x, and l commands. The general syntax for the ‘open archive’ commands is:

(O | o) <MPQFile> [FileLimit]

Parameters in <> are required, ones in [] are optional, | means only one of two options is allowed. MPQFile is the file to open. FileLimit is used only by the O command. It is the maximum number of files that this archive can hold, and is 1000 by default. However, it will work ONLY when the file is being created for the first time. If the MoPaQ already exists, FileLimit will have no effect. The FileLimit parameter has a minimum value of 4, and a maximum value of 32767

NOTES: One file may be open for input and another for output at the same time, but the same file cannot be open for both input and output at the same time. This has to do with Windows file locking, and cannot be fixed. However, one file may be opened for input, closed (with the ‘close file’ command in section 3.4), and then opened for output, and vice versa. Also, each file that a MoPaQ can hold takes up 16 bytes regardless of whether it is used. This can add up.

Closing archives – the C and c commands

Just like you must open a MoPaQ before using it, you must close the files after using them. On the same note, there are two ‘close file’ commands – the C and c commands. The C command (uppercase) closes the file that is currently open for output (opened with the O command). Likewise, the c command (lowercase) closes the file that is currently open for input (with the o command). Is it very simple to use the close commands, as shown on the following line:

(C | c)

That’s all there is to it.

Pausing scripts – the p command

Occasionally, a script will behave different than you expected it to. And if the script is halfway large, it may scroll by too fast to see what happened. The solution to this common problem is the pause script command. The pause command is simple in function and usage, as shown here:

p

When this command is executed, the following message will appear, and the program will freeze until you hit a key on the keyboard.

Press any key to continue...

Technical Support

Is it a bug?

There are several known issues with Mo’PaQ 2000. Some are bugs, some aren’t. I will try to summarize all known issues and their solutions here.

Symptom: I get some kind of message like “Cannot find StarEdit”, “There is internal error of LMPQAPI.DLL”, or “Unknown version of StarEdit” and then my whole computer crashes.

Problem: This is due to a bug in the LMPQAPI.DLL. I have notified Lelikov about it, but I haven’t heard anything from him about it being fixed.

Solution: Make sure that both storm.dll and StarEdit.exe are in the same directory as MPQ2K. Then, try the procedure in section 2.3 to get a compatible version of StarEdit.

Symptom: When I list the files in a MoPaQ, it says, “0 recognized files”.

Problem: The MoPaQ does not contain a listfile.

Solution: Try specifying a listfile for the game you are editing. Listfiles may be found at Camelot Systems(www.camsys.org)

Symptom: I can add around 1000 files to a MoPaQ, but then I can’t add any more!

Problem: As part of the format, MoPaQs have a built in limit on how many files they can store. This number is designated when the MoPaQ is created for the first time. This number is, by default, 1000.

Solution: Write a script to compile your MoPaQ. Count the total number of files you want to put in the MoPaQ, then set the number of files on the line to create the MoPaQ. This MUST be done when the MoPaQ is first created. If the MoPaQ already exists, delete it. For example, the following line opens the archive ‘whatever.mpq’ and set the file limit to 2000.

O whatever.mpq 2000

Symptom: I have this tiny archive with like 2k or stuff in it, but it’s like 20k large? Where’s the size coming from?

Problem: Each file that a MoPaQ CAN contain (not DOES contain) gets one header entry of 16 bytes long. When you get into the thousands of files, those 16 bytes can add up.

Solution: Try decreasing the number of files your archive can hold. See question above. (

Symptom: I’ve added some Smackers (SMKs) to my Mo’PaQ, but Starcraft crashes every time it tries to view them.

Problem: Smackers CAN NOT be compressed in an archive.

Solution: Add the Smackers using the ‘A’ command (add uncompressed/unencrypted).

Tech. support checklist

Please don’t go reporting to me every time something unexpected happens! If you do, I will simply squelch you. But, if you do have a problem, go through this checklist.

Try looking through the manual. The solution to most problems is in here somewhere. Read the WHOLE manual first. If you report something to me that the solution is in this manual, I’ll probably insult you repeatedly, and not answer your question at all.

Make sure the problem can be reproduced. Is it just a fluke? Try doing the same thing again. If the problem occurs exactly the same way more than once and it isn’t in the manual, it may possibly be a worthwhile error to report.

Finally, lastly, and leastly, try contacting me. I can be reached at omega@dragonfire.net or at ICQ #10078230 (ICQ is preferred).

Getting the latest version of Mo’PaQ 2000

For the most up-to-date version of Mo’PaQ 2000, go to the official Mo’PaQ 2000 site at www.campaigncreations.com/starcraft/mpq2k/

Getting the MPQ API Library DLL

You can acquire the MPQ API Library DLL and documentation (for your own programs) at Lelikov’s site at http://www.chat.ru/~lelmpq/.

Credits

This program (excluding the LMPQAPI.DLL) was written totally and completely by me, Justin Olbrantz(Quantam). I may be contacted at omega@dragonfire.net.

The MPQ API Library DLL (LMPQAPI.DLL) was written completely by my amazing friend Andrey Lelikov. He may be contacted at alelikov@mail.ru

This program was written, and refers to itself as ‘The Official Client of the MPQ API Library DLL’ with full permission from Andrey Lelikov.

Coming Next Version

Add command to rename files

Allow use of wildcards for multiple listfiles (maybe). OR, make all handling of listfiles internal, so you don’t need to worry about them.

Fixes to any bugs I can find

Got any other ideas? Mail me!

Closing Words

As much fun as writing this useful program has been, I think that I will not continue to work on this program any more (I may work on important things that you notify me of). Rather, I will turn my attention to a new program, possibly to be dubbed Mo’PaQ 2001. It will take me a while because I’m trying a lot of new stuff and I’ll need to learn a lot. But, hopefully it will all pay off. I can’t tell you too much about Mo’PaQ 2001, but I will say this: If you think MPQ2K is awesome, hang on, because you ain’t seen nothing yet.

Legal Stuff

This program is freeware, you can do anything you want with it, but IT IS DISTRIBUTED "AS IS". NO WARRANTY OF ANY KIND IS EXPRESSED OR IMPLIED. YOU USE IT AT YOUR OWN RISK. THE AUTHOR WILL NOT BE LIABLE FOR DATA LOSS, DAMAGES, LOSS OF PROFITS, OR ANY OTHER KIND OF LOSS WHILE USING OR MISUSING THIS SOFTWARE.

